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Abstract
The most recent observations of dynamical time-dependent fluctuating behaviour of mesoscopic
radiation defects in body-centred cubic metals (Arakawa et al 2006 Phys. Rev. Lett. 96 125506;
2007 Science 318 956–9; Yao et al 2008 Phil. Mag. at press) have highlighted the need to
develop adequate quantitative models for the structural stability of defects in the mesoscopic
limit where defects are accessible to direct in situ electron microscope imaging. In pursuit of
this objective, we investigate and compare several types of mesoscopic vacancy and interstitial
defects in iron and tungsten by simulating them using recently developed many-body
interatomic potentials. We show that the mesoscopic vacancy dislocation loops observed in
ion-irradiated materials are, without exception, metastable with respect to the transformation
into spherical voids, but that the rate of this transformation and even the specific type of the
transformation mechanism depend on the defect size and the properties of the material.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ferritic-martensitic bcc (body-centred cubic) iron-based steels
and tungsten are the main candidate materials for structural
and plasma facing components of future deuterium–tritium
fusion power plants. During the lifetime of components these
metals will be subject to a significant flux of neutrons, resulting
in radiation damage due to knock-on cascades. Collision
cascades lead to the production of interstitial and vacancy
defects, which form defect clusters, either in the core of the
cascade itself, or as a result of subsequent migration and
interactions [4, 5].

An understanding of the evolution of this damage, which
can lead to loss of material integrity, first requires knowledge
of the structure and relative stability of the different types
of interstitial and vacancy defects formed. In particular, the
present work investigates the electron microscopy observation
of unexpected stability of planar vacancy loops in ion-

irradiated bcc metals, as well as the corresponding low-yield
of visible (in electron microscope images) loop defects in
collision cascade events compared to other metals such as face-
centred cubic (fcc) copper.

There is a significant amount of experimental work on
the damage produced by heavy-ion bombardment of iron
published in the literature, for which extensive reviews can
be found in [6–8]. For tungsten experimental information
is less extensive but Häussermann [9], and Jäger and
Wilkens [10] have investigated defects formed by irradiating
this metal. Further work on defects formed by heavy-
ion bombardment of iron [11–13] was recently extended to
in situ electron microscope observations of time-dependent
fluctuating dynamics of radiation defects in thin foils [1–3].
In [3], Yao et al have observed the formation of vacancy loops
in heavy-ion irradiated foils of Fe and FeCr-alloy. In the
current paper we specifically concentrate on the investigation
of vacancy and interstitial defects in the mesoscopic limit
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(where a defect may contain up to several hundred individual
self-interstitial atoms or vacancies) since these defects are
observed in electron microscope examinations of irradiated
foils [8].

Alongside the experimental work there have been several
computational investigations of irradiation damage. In 1985,
molecular dynamics (MD) simulations of model fcc and
bcc metals by Matthai and Bacon [14] were the first to
demonstrate that vacancy defects could form in the thermal
spikes associated with irradiation cascades, providing the
concentration of vacancies was sufficiently high. More
than a decade later, Soneda and Diaz de la Rubia [15]
made a significant step in the understanding of evolution
of cascades in Fe through the combined use of MD and
kinetic Monte Carlo (kMC) simulations. They observed that
single vacancies migrated significantly more slowly than self-
interstitial atom defects. kMC simulations also showed that
vacancies only started clustering once the self-interstitial atom
defects became rare, either as a result of the latter migrating
away from the centre of the cascade, or due to recombination.
Additionally, Soneda and Diaz de la Rubia [15] concluded
that the b = a/2〈111〉 planar self-interstitial loops were
the most stable interstitial cluster configuration in Fe. They
noted that spherical voids had the highest binding energy, and
therefore the lowest formation energy, of all the vacancy cluster
configurations. Similar findings were reported in [16].

At the same time, in the simulations of voids and vacancy
clusters [15] no collapse of a group of individual vacancies
into a vacancy dislocation loop was ever observed, and in the
kMC simulations no evidence was found for the formation
of large vacancy clusters. An observation of an individual
〈100〉 vacancy loop forming directly in a cascade was reported
later [17]. More recently Calder et al [18] have simulated the
formation of 〈100〉 vacancy loops in α-iron and showed that the
yield of defects increases with both the mass and energy of the
primary knock-on atom (PKA) due to the heightened energy
density in the cascade region.

Puigvi et al [19] performed atomistic simulations of
mesoscopic defects in bcc Fe. They analysed the b =
a/2〈111〉 interstitial loops and the so-called closed vacancy
loops. This work followed earlier research by Osetsky et al on
the structure and stability of vacancy and interstitial clusters in
bcc Fe and fcc Cu [20].

It is obvious from the literature that little is known about
the behaviour of defects in tungsten, either experimentally or
from simulations. The present studies address this by direct
comparison with a similar metal (Fe) about which much more
is known.

To describe interactions between atoms in simulations we
primarily used two recently developed many-body interatomic
potentials. For iron, we use the Dudarev–Derlet (D–D)
‘magnetic’ many-body potential developed in [21, 22]. This is
a relatively short-range many-body potential derived by taking
magnetic interactions between atoms in iron into account.
The embedding and the pairwise parts of this potential are
made up of a summation of cubic knot functions, which have
been fitted to various material properties including the bulk
cohesive energy, lattice constant, elastic stiffness constant of

different phases, the un-relaxed vacancy formation energy, and
the relaxed formation energies of the three high-symmetry
self-interstitial atom configurations (see [21] for more detail).
As both a check and comparison we have also performed
simulations using the popular non-magnetic Fe potential of
Mendelev et al [23]. Very recently Derlet et al [24] have
used similar fitting methods to derive interatomic potential
parameters for five of the non-magnetic bcc transition metals
(V, Nb, Ta, Mo, and W). The parameters for the interatomic
interaction between atoms in tungsten described in [24] were
used in the present simulations.

The paper is organized as follows. We start by
briefly addressing the structure of the defects and the
simulation method. Then we compare energies of alternative
configurations containing the same number of individual
defects (either vacancies or self-interstitial atoms) using
molecular statics (MS), and assess the relative stability
of the ‘competing’ defect configurations in iron and
tungsten. Subsequently, we estimate the timescales
for the formation of defect clusters in cascades, and
highlight the extreme difference between the timescales
characterizing microstructural evolution of iron and tungsten
under irradiation.

2. Vacancy and self-interstitial defects at 0 K

The formation energy E f
D of a defect configuration is defined

as the difference between the minimum energy evaluated for
a simulation cell containing the defect, and the energy of a
perfect lattice containing the same number of atoms, namely

E f
D = Er

L+D(n) − Er
p(n), (1)

where Er
L+D(n) is the energy of a set of n atoms containing

the defect and Er
p(n) is the energy of a perfect lattice of

n atoms. For the case of a Bravais lattice Er
p(n) is equal

to nEr
atom, which is n times the energy of a single atom in

a lattice (the cohesive energy). In the simulations carried
out here the cohesive energy of iron for the Dudarev–Derlet
magnetic potential is −4.316 eV per atom (−4.122 eV for
Mendelev), whilst in tungsten the cohesive energy per atom
is −8.90 eV. From this point onwards we imply the defect
formation energy whenever we refer to the energy of a defect.
We now evaluate the formation energies of the mesoscopic
circular b = (a/2)〈111〉 and b = a〈100〉 vacancy and
interstitial loops that are frequently observed in ion-irradiated
materials. As was noted in 1967 by Johnson for nickel [25],
there is an issue as to the stability of vacancy dislocation loops
relative to other types of vacancy cluster. To investigate this
for Fe and W we also compare the closed (collapsed) vacancy
dislocation loop energies with the energies of spherical voids
and open loops (planar voids) containing the same number of
single vacancy defects.

The formation energies were calculated using molecular
static (MS) simulations on lattices with periodic boundary
conditions (PBCs). MS is the energy minimization form of
molecular dynamics and involves forcing the kinetic energy of
the system to decrease, thereby causing the atoms to ‘relax’
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to a ‘frozen’ zero-temperature configuration. Each simulation
was performed under constant pressure conditions with an
orthorhombic geometry that allowed the lattice to expand and
contract in each of the three coordinate directions. In the case
of the 〈111〉 defects this meant the [11̄0], [112̄], and [111]
coordinate axis directions, while for 〈100〉 loop the box was
allowed to expand in the normal Cartesian directions. The
result of this process was a simulation cell that could change
its volume, perhaps in order to accommodate extra atoms, but
always remained cuboid.

2.1. Vacancy defects: BCC iron

Constructing the initial configurations of vacancy loops
for atomistic simulations is known to present a non-trivial
problem, and the only practical solution found so far involved
switching between a long-range and a short-range interatomic
potential [19]. In this work, to construct open vacancy loops,
circular discs of atoms of a given radius were removed from
three consecutive (111) ABC planes for 1

2 〈111〉 loops and
two consecutive (100) AB planes for 〈100〉 loops. On the
other hand, to construct a closed vacancy loop, planes of
atoms outside the loop radius (i.e. in the bulk) were now
appropriately added to the initial bcc lattice at the mid-
way points between the (111) or (100) planes. When these
configurations were relaxed, the extra planes in the bulk
expanded to a perfect lattice configuration, and a prismatic
closed vacancy dislocation loop was created. This procedure
did not require the sub-relaxations and sequential applications
of long- and short-range interatomic potentials as described
in [19], but did produce the desired closed vacancy dislocation
loop.

A spherical void was created by removing a sphere of
atoms of a given radius. Here we do not consider the possibility
of faceting. The simulation cell used for calculations with
the Dudarev–Derlet potential consisted of 48 000 atoms, which
was large enough to preclude any significant elastic image
force effects for the largest defect structures considered. In
validation simulations we investigated the formation energy of
defects in a range of simulation cell sizes containing up to
0.4 million atoms, and found that there was less than a 1%
difference in the energy for simulation cells sizes from around
30 000 atoms up to the maximum size considered. We also note
that this implies that surface effects are not very important in
the results discussed here. The PBCs used in the simulations
mimic the effect of nearby surfaces, i.e. the defect ‘sees’ itself
through the PBCs in the same way that it would experience
an image force if it were near a surface, for example in a
thin foil. A lattice containing around 30 000 atoms is roughly
7 nm3 in size, which means that a loop defect was around
14 nm away from itself in the [111] direction (the only defects
for which images are significant are the closed vacancy and
interstitial loops with their relatively long-range elastic fields,
but these only extend in the [111] direction). This shows that
our simulations apply to cases in which surfaces do not play a
significant role.

For the D–D potential, figure 1 shows the defect energy
as a function of defect size, measured in terms of the number

Figure 1. Variation in formation energy of spherical voids and
various 1

2 〈111〉 loop defects in Fe under the Dudarev–Derlet
magnetic potential as a function of defect size. The lines represent
continuous interpolations between the discrete data points found
using atomistic simulations.

of vacancies/interstitials, for all open and closed 1
2 〈111〉

vacancy loops, spherical voids and 1
2 〈111〉 interstitial loops.

Here the lines represent continuous interpolations between the
discrete data points found using atomistic simulations. The
graph shows that spherical voids represent the lowest energy
configuration for a cluster of vacancies of any size. This agrees
with the findings of Soneda and Diaz de la Rubia [15], and
Beeler [16]. We see that there is an intersection between
the formation energy curves for the open and closed vacancy
loops. The cross-over from positive to negative difference
between the energies of an open and a closed loop occurs near
the 17.7 Å loop diameter, or a 52-vacancy defect, where the
closed loop structure becomes energetically more favourable.
Below this size an open vacancy loop configuration has lower
formation energy. To give a clear illustration of this point, in
figure 2 we plot the difference between the formation energies
for an open and a closed loop as a function of the loop diameter.
For diameters below 5 Å it is effectively impossible to form a
closed vacancy loop, as an attempt to form it in a simulation
immediately results in the loop opening-up even at 0 K. For
loop diameters between 5 Å and 17.7 Å a closed loop is
inherently unstable with respect to relaxation into an open loop
configuration. For small loop sizes (∼7 Å) we observed this
actually happening on the MD timescale.

The fact that a closed vacancy loop of sub-critical size
(diameter less than ∼17.7 Å) transforms into an open vacancy
loop, and then into a spherical void, was confirmed by finite-
temperature MD simulations. Simulations show that a sub-
critical closed vacancy loop begins to open-up on MD ∼ 1 ns
timescales for temperatures around T = 500 K. Such a
transformation also occurs at lower temperatures, but on the
timescale several orders of magnitude longer.

The conversion of an open vacancy loop into a spherical
void occurs via the diffusion of single vacancies across the
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Figure 2. Difference between formation energies of closed and open
1
2 〈111〉 vacancy loops in Fe as a function of diameter (D–D
potential).

internal surfaces of the open loop (a process actually observed
in simulations), a general result that is expected to hold for
lower temperatures albeit for longer simulation times. Hence
on the timescales associated with real experiments (typically
seconds or longer), sub-critical closed loops would readily
transform into open loops and then into voids, even at low
temperatures and certainly at room temperature.

On the other hand, the closed vacancy loops of super-
critical size (diameter greater than ∼17.7 Å) can also
eventually transform into voids, but the mechanism of
transformation is now entirely different. By investigating the
behaviour of closed super-critical size loops at temperatures
greater than 1000 K we discovered that these loops shrink
via the evaporation of individual vacancies. These free
vacancies are then left to diffuse in the material and then
to perhaps coalesce, forming stable voids, which then grow
further by the agglomeration of vacancies. Once the loop
has shrunken into the sub-critical size region it would quickly
transform into a void and may then grow by sucking-in any
surrounding vacancy–cluster debris that may have originally
evaporated from it. It seems unlikely that super-critical
loops can transform directly into spherical voids, even at
high temperatures, because the transformation pathway is not
straightforward. At elevated temperatures the evaporation
of vacancies would occur readily and would most likely be
favoured over and above more complex processes.

There is a question as to whether the effect described
above is an artefact of the particular interatomic potential used.
Recently, Björkas and Nordland [26] simulated recoil collision
cascades in Fe using the D–D and Mendelev potentials and
found that the Frenkel pair production was roughly the same
under both, even though they are derived from different fitting
parameters. This suggests that the Mendelev potential would
produce a similar set of curves as those found for the D–D
potential. We have tested this by repeating the same molecular
relaxations on 1

2 〈111〉 defects (as well as spherical voids) using

Figure 3. Variation in formation energy, as predicted by the
Mendelev potential, of spherical voids and various 1

2 〈111〉 loop
defects in Fe as a function of defect size.

the potential of Mendelev et al [23]. The results are shown
in figure 3. The pattern is essentially the same as that seen
in results from the D–D potential, although the sub-critical
region for collapsed vacancy loops is now smaller, with the
intersection of the collapsed and open vacancy loops curves
happening at around 30 vacancies (∼13.4 Å diameter). The
main reason for this appears to be the extended range of the
Mendelev potential (5.3 Å versus 4.1 Å), which causes the
opposing surfaces of an open loop or planar voids to ‘see’
each other. This increases the relative energies of open loops
when compared to their equivalent collapsed loops, leading to
an earlier onset of cross-over.

What is the origin of the fundamental difference between
the energies of voids, closed and open vacancy loops? The
formation energy of a void containing N vacancies to a very
good approximation equals its internal surface energy

Evoid = 4π

(
3N�0

4π

)2/3

W , (2)

where W is the average (over the low-energy orientations
of surface facets) surface energy, which according to
calculations [27] is of the order of 1.7 J m−2, and �0 = a3/2 =
11.82 Å

3
is the formation volume of a vacancy in iron, where

a = 2.87 Å is the lattice constant. For example, the formation
energy of a 102-vacancy void estimated using equation (2) is
58.1 eV, whereas the value found in simulations equals 60.9 eV
using the D–D potential. Similarly, the formation energy of an
open 1

2 〈111〉 loop is given by the sum of energies of the two
free surfaces

Eopen = 2
a2

√
3

NW111 + Eperimeter, (3)

where a2/
√

3 is the surface area corresponding to a single
vacancy, and W111 = 2 J m−2 is the surface energy for the
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(111) surface termination [27]. Estimates show that the first
term in equation (3) gives the formation energy Eopen =
123.5 eV for a N = 104 vacancy loop compared with 132.9 eV
found in the D–D potential simulations. The second term in (3)
describing the contribution to the formation energy from the
perimeter of the loop is relatively small, and in the case of a
1
2 〈111〉 loop the energy per unit length of the perimeter of the

loop is of the order of 0.126 eV Å
−1

.
The formation energy of a closed dislocation loop is given

by the sum of the energy stored in the elastic field loop and
the core energy of the dislocation forming the perimeter of
the loop [28]. Calculations based on the anisotropic elasticity
approximation (which must be used for iron since the material
is strongly elastically anisotropic even at low temperatures)
give an approximate expression for the formation energy [29]

Eclosed = 2π R∗
[

K b2

4π
ln

(
4R∗

eδ

)
+ Fδ + Fc

]
, (4)

where for the case of a 1
2 〈111〉 loop K b2/4π ≈ 0.39 eV Å

−1
,

Fδ ≈ 0.35 eV Å
−1

is the zero-temperature core-traction
energy, Fc ≈ 0.47 eV Å

−1
is the zero-temperature anharmonic

core energy, and R∗ is the radius of the loop. δ is the
characteristic cut-off radius for the dislocation core, which
was estimated in [29] to be 0.4 nm. For a 104-vacancy loop
equation (4) gives the formation energy Eclosed = 111.7 eV
compared with the value of 110 eV found in simulations (D–D
potential). Since the diameter of a loop is proportional to the
square root of the number of vacancies N , in the mesoscopic
limit Eclosed ∼ √

N ln N , whereas Eopen ∼ N , and hence for
relatively small N the formation energy of an open loop is
lower than the formation energy of a closed loop. The cross-
over point between the energies of closed and open vacancy
loops predicted by formulae (3) and (4) is near N = 50, in
good agreement with atomistic simulations.

We repeated the analysis of formation energies for the
〈001〉 loops. We only considered the D–D potential for Fe,
since the comparison discussed previously indicated that the
Mendelev potential produces very similar results. Results are
summarized in figure 4, where data for spherical voids are
included for comparison. As in the 1

2 〈111〉 loop case, the
energies of the 〈001〉 vacancy loops are significantly higher
than those of similarly sized spherical voids. The cross-over
point between the energies of the open and closed loops is
now significantly higher than for the 1

2 〈111〉 case. For loops
containing fewer than about 150 vacancies (approximately
28 Å in diameter) the open loop configuration is more stable
than the closed one.

Again, the formation energy of an open 〈100〉 loop is the
sum of energies of the two free surfaces

Eopen = 2
a2

2
NW100 + Eperimeter, (5)

where a2/2 is the surface area corresponding to a single
vacancy, and W100 = 1.8 J m−2 is the surface energy for the
(100) surface termination [27]. The first term in equation (5)
gives Eopen = 89.8 eV for a N = 97 vacancy loop compared

Figure 4. Variation in formation energy of 〈001〉 mesoscopic
vacancy and interstitial dislocation loops, and spherical voids in Fe
plotted as a function of the number of individual defects forming the
loop or a void (D–D potential).

with 102.7 eV found in simulations. This shows that in the
case of a 〈001〉 vacancy loop the contribution of the perimeter
term is larger than in the 1

2 〈111〉 open vacancy loop case, and
the energy per unit perimeter length is in this case 0.184 eV/Å.

The formation energy of a closed dislocation loop is given
by equation (4), where b = (0, 0, a) and the anisotropic
elasticity factors are [29] K b2/4π ≈ 0.465 eV Å

−1
, Fδ ≈

0.39 eV Å
−1

, and Fc ≈ 0.5 eV Å
−1

, and R∗ is the
effective radius of the loop. By substituting these values into
equation (4) for a 97-vacancy loop we find the elastic formation
energy of the loop Eclosed = 114 eV compared with 111.1 eV
found in atomistic simulations.

The reason for this difference in the critical size between
1
2 〈111〉 and 〈001〉 closed vacancy loops can, in part, be
understood through a direct comparison between the two
different orientations. The graph shown in figure 5 compares
the two sets of vacancy loop energies. For small defect
sizes the 〈001〉 closed loops are slightly more stable than
their 1

2 〈111〉 equivalents. However, the difference between
the two curves does not become significant until the defect
size approaches 150 vacancies (30 Å diameter for 1

2 〈111〉, and
28 Å diameter for 〈001〉 loops), and so this alone does not
explain the large difference in the critical size. What figure 5
does indicate is that the formation energies of open loops for
the two different orientations diverge significantly at fairly
modest defect sizes. Density functional calculations [30] and
MD simulations performed using the magnetic potential [27]
have demonstrated that the (100) surface energy is significantly
lower than the energy of the (111) surface. This trend is
reproduced in the present simulations, where surface energies
give the leading contribution to the energy of open loops.
This fact is responsible for the significantly lower energy of
the 〈001〉 open loops, which in turn is the factor determining
the greater cross-over size for the 〈001〉 open/closed loop
structures.
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Figure 5. Comparison of energies of formation for mesoscopic
vacancy loops with different Burgers vectors in iron, as predicted by
the D–D magnetic potential for Fe.

In recent MD simulations of cascades in iron Calder and
Bacon [31] observed the formation of rectangular 〈001〉 closed
vacancy loops. This suggests that rectangular 〈001〉 clusters
of vacancies are more energetically favourable than those with
a more circular structure, which we have been discussing up
to this point. To investigate whether this is indeed the case
we have performed a series of MS relaxations using the D–
D Fe potential on selected rectangular closed vacancy loops
with varying size and shape for both 1

2 〈111〉 and 〈001〉 Burgers-
vector orientations. Figure 6(a) displays the results for 1

2 〈111〉
loops. For comparison, the circular loop results of figure 1
are also shown. For the rectangular vacancy defects, the label
indicates the dimensions of the loop. The first dimension is
the length of the defect in the [11̄0] direction in multiples
of a/

√
2, which is the distance between the (11̄0) planes

in the ([11̄0], [112̄], [111]) coordinate system. The second
dimension is the length in the [112̄] direction, this time in
multiples of a/

√
6, for the same reason. From figure 6(a) it

can be seen that rectangular 1
2 〈111〉 loops are generally higher

in energy than circular closed loops of equivalent size.
If we now inspect figure 6(b), which shows the results

for the 〈001〉 rectangular loops, an entirely different picture
emerges. In this case the rectangular loop dimensions are the
lengths in multiples of a/2 in the [100] and [010] directions,
respectively. The rectangular 〈001〉 loops are mostly of lower
energy than their circular counterparts. This suggests that they
should become viable (i.e. stable compared to open loops) at a
lower defect size than circular loops, and so our simulations
show that rectangular 〈001〉 vacancy loops should form in
preference to circular ones. There is also evidence to suggest
that the energies of rectangular and circular 〈001〉 loops diverge
with increasing size, with rectangular loops becoming even
more energetically favourable. This agrees with experimental
observations showing that the large 〈001〉 edge dislocation
loops (either vacancy or interstitial) formed under irradiation
are rectilinear in shape. For example, Masters [32], and

Figure 6. Comparison of formation energies of (a) 1
2 〈111〉 and

(b) 〈001〉 vacancy loops of different shape in Fe (D–D potential).

Little and Eyre [33, 34] both observed the formation of large,
rectangular interstitial-type dislocation loops in irradiated Fe
with sides parallel to 〈100〉 directions and pure edge in
character.

2.2. Vacancy defects: BCC tungsten

The formation energy analysis performed for defect clusters
in Fe has been extended to defects with (a/2)〈111〉 Burgers
vectors in tungsten. Spherical voids have also been considered.
Experimental observations, see Häussermann [9], or Jäger and
Wilkens [10], showed that loops of this type occur exclusively
during irradiation, giving no evidence for loops with other
Burgers vectors being formed. Therefore, we omitted the
〈001〉 loops from the tungsten study. Figure 7 summarizes the
key results. Figure 7(a) shows the variation in the energy of
closed vacancy–loops, interstitial loops, open vacancy loops,
and spherical voids plotted as a function of defect size given

6
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Figure 7. (a) 1
2 〈111〉 defect energies in W as a function of size;

(b) variation of difference between closed and open 1
2 〈111〉 vacancy

loop energies in W as a function of diameter (closed minus open).

by the number of vacancies or self-interstitials. As was the
case with Fe, the open loops are more energetically favourable
than their closed vacancy–loop equivalents for small defects.
There is a critical size above which the reverse becomes
true.

Figure 7(b) shows how the difference in the formation
energy of closed and open 1

2 〈111〉 vacancy loops varies as a
function of the diameter of a loop. The critical size, above
which the closed loops are energetically more stable than the
open ones, is about 34 Å, corresponding approximately to
a 157-vacancy defect. This is considerably larger than in
Fe (18 Å, ∼50 vacancies). Similarly to the case of Fe, the
spherical voids are the most stable configuration for a vacancy
cluster of any size (see figure 7(a)), but the large difference
between the energy of this structure and the equivalently sized
(in terms of the number of vacancies) planar defects means
that the vacancy loops of any kind in tungsten are highly

unstable and readily transform into spherical voids through
surface vacancy diffusion and/or vacancy evaporation.

2.3. Self-interstitial defects

Figure 1 shows that except at very small defect sizes (less
than 10 vacancies/interstitials), under the D–D potential in Fe
1
2 〈111〉 interstitial loops are of lower energy than equivalently
sized closed vacancy loops. This is repeated for 〈001〉 loops
in Fe (figure 4) and in W (figure 7(a)). Since the difference
between energies of closed vacancy loops and interstitial loops
is related to the length of the perimeters of the loops, these
observations suggest that in the limit of large defect size the
core energy of the curved dislocation forming the perimeter
of a vacancy loop is greater than that of an interstitial loop
of the same size. The difference between the interstitial and
closed vacancy loop curves in all the graphs of figures 1, 4,
and 7 increases slightly with defect size. This is consistent
with the concept of the energy per unit perimeter length being
greater for vacancy loops. Puigvi et al [19] observed this
divergence in atomic simulations of defects in Fe, and found
that the relative energies of interstitial and vacancy loops are
sensitive to the choice of interatomic potential. Using the
long-range pair potential of Osetsky et al [35] they found the
same relationship for 1

2 〈111〉 loops in Fe as presented here, but
with the Ackland et al [36] many-body potential the reverse
situation was observed, namely that vacancy loops were of
lower energy than their interstitial counterparts. We observe
a similar phenomenon in our simulations. Under the Mendelev
potential for Fe, we see that the 1

2 〈111〉 interstitial loops are
higher in energy than equivalent collapsed vacancy loops (see
figure 3), which is opposite to the results under D–D.

Both interstitial and closed vacancy loops are related
to an edge dislocation; one with the extra half-plane inside
the loop (interstitial), and one with it on the outside (closed
vacancy loop). This results in the relaxed configurations of
equivalently sized interstitial and vacancy loops being difficult
to distinguish from one another.

Clearly, it is not possible to observe the asymmetry
between the two structures, which exists, by direct viewing of
their constituent atoms. However, by analysing the strains in
directions parallel to the burgers vector of a loop we can gain
some insight. In the ([11̄0], [112̄], [111]) coordinate system
the atoms can be grouped according to which [111] atomic
string they belong to. For 1

2 〈111〉 loops we can then calculate
the strain in the [111] direction between each pair of adjacent
atoms of a particular string, using the equation:

ε[111]
n = δ�

�0
=

(
x [111]

n − x [111]
n−1 −

√
3

2 a
)

√
3

2 a
, (6)

where ε[111]
n is the strain associated with atom n in the [111]

direction relative to the n − 1 atom neighbouring it. δ� is
the extension, which in this case is the difference between
the current separation of the atoms in [111] (xn − xn−1) and
their original separation in a perfect lattice �0. For the [111]
direction this is

√
3/2 times the lattice parameter a. In a perfect

lattice these strains are all close to zero, but if the string passes
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through a defect then we can expect some of the strain values
to be either negative (compression) or positive (tension).

In figure 8 the ‘maximum strain magnitudes’ for each
string have been calculated for equivalent 199 interstitial and
super-critical vacancy 1

2 〈111〉 loops in W. In the graph the
maximum strains are plotted as a function of the corresponding
string’s radial distance from the centre of the loop. To aid
visualization we have plotted the strings lying in the positive
(11̄0) half-plane, relative to the loop centre, on the right of
the graph, and those in the negative half-plane to the left. At
both ends of the graph the strains are essentially zero, and these
correspond to strings on the outside of the loops that are so
far from the defects that they experience little or no distortion.
As the strings get closer to the edges of the loops the strains
they experience become greater, reaching a maximum (either
positive or negative) at the approximate position of the edges
at around ±19 Å in these 38 Å diameter loops. As we move
through the interior of the loops the strains fall away from their
maximums at the edges and are near zero again at the centres,
before increasing again towards the other edge.

We note that the strains in the defect centres are not as
close to zero as those on the outside, far from the loop. This
is due to the combined perimeter effect from all directions (as
opposed to just one direction for strings exterior to the defect)
which leads to some strain (less than 5%), even at the centre
of the loop. Only in very large loops the edges of the loops
are far away from each other to experience nearly no strain,
however this condition is not reached even in a 463-vacancy
closed 1

2 〈111〉 loop in Fe (5.3 nm diameter). We note that
the magnitudes of the tensions are roughly 10% greater than
the maximum compressive strains. For the closed vacancy
loop (blue diamonds) the strains become rapidly more negative
(compressive) as the strings get closer to the loop edge from the
outside. The strains reach a maximum compression of almost
15% before switching to tensions (positive strains) of the order
of 25% at the loop edge, which are associated with the absence
of atoms. The tensions fall to nearly zero within 2 Å of the
edge.

In the case of the interstitial loop (red triangles) there are
extra atoms inside the loop, which causes the mirror image
of the strain patterns seen for the vacancy loop. This time
the compressions increase to 15% from inside the loop (which
again persist at a less than 5% level to the centre of the loop),
which then switches to the 25% tension on the outside of the
loop, which drops to less than 3% within about 2 Å. We see
that there is clear asymmetry in the structure of interstitial and
vacancy dislocation loops.

The structural similarity between interstitial and vacancy
loops, as illustrated by the graph in figure 8, suggests that
the thermal migration of equivalently sized stable interstitial
and vacancy loops might be expected to be quite similar.
We have investigated this issue by measuring the respective
diffusion coefficients using long-time finite-temperature MD
simulations. As reported previously by Osetsky et al [37, 38],
we find that vacancy loops do migrate on similar timescales as
interstitial loops, though at a systematically lower rate.

Figure 8. Variation of maximum strain through 1
2 〈111〉 closed

vacancy and interstitial loops in W.

3. Comparison with experiment

It is important to appreciate the difference between the length-
scales of our simulations and experimental observations.
Whilst a mesoscopic loop might be considered as small in
experiments, such a defect contains several hundred vacancies
or self-interstitial atoms and is in effect very large in the context
of an MD/MS simulation.

When comparing the results of the simulations performed
to what has been seen in transmission electron investigations
of irradiated samples, one must keep in mind that in the
few nm defect size range, only the long-range strain fields
associated with prismatic dislocation loops (i.e. closed vacancy
loops) can be resolved [3, 9]. Spherical voids do not carry
a large strain field, and thus with the exception of very large
cavities containing several hundred vacancies, such voids, if
present at equilibrium, would be fairly difficult to see in
transmission electron microscope (TEM) images. Thus the
prediction that at loop diameters less than a critical value
it is the open loops, transforming into spherical voids, that
are the most energetically favourable configurations may be
relatively difficult to verify by means of electron microscope
observations. Recently, Yao et al [3] improved the technique
for imaging small voids and confirmed the presence of
numerous small voids in iron foils irradiated with energetic
ions.

There is also the issue of to what regions of a material our
simulations correspond. As discussed in section 2.1, validation
simulations indicate that our results are most appropriate to
defects in the bulk of irradiated materials. In particular, they
are not directly applicable to the region close to the surface
of thin foils (typically ∼10 nm thick [3]), where in-plane
dislocation loops are strongly attracted to the surface leading
to a so-called depleted zone. However they can be compared
to the deeper damage regions of some experiments, where
surface effects are not significant. Also, if a dislocation loop
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(spherical and planar voids have no elastic fields and so are
unaffected by surfaces in general) lies perpendicular to the
surface its elastic field would not interact with the surface and
in these circumstances our simulations would apply to the loop
regardless of its distance to a boundary.

Our results offer a likely explanation for the low closed
vacancy loop yield observed using electron microscopy in
irradiation-induced cascade experiments, which is typically of
the order of 1% or lower in self-ion irradiation experiments,
and certainly much lower than in similar experiments on fcc
metals [7]. In order to produce a long-lived closed vacancy
loop, the number of vacancies in a cascade must be sufficiently
high-enough so that upon collapse a super-critical (more than
around 30–50 vacancies in size) loop is formed. In most
cascades the total number of vacancies is too low to produce
a stable loop, since any closed loop forming in the sub-critical
size region will be unstable and will transform rapidly to an
open loop structure and finally to a small spherical cavity.

Positron annihilation lifetime spectroscopy experiments
on neutron irradiated copper and iron [39, 40], have detected
the production of small (typically less than 1 nm in diameter in
the case of a spherical cavity) void defects. In Fe, these voids
are produced in large numbers (on the order of 1024 defects per
square metre [40]) at relatively low irradiation doses, which
illustrates their preferential formation compared to vacancy
dislocation loops, in agreement with our simulations. Thus, in
the majority of irradiation conditions, and certainly in neutron
irradiation, most of the vacancy defects produced in cascade
collapse events in Fe are voids, with an occasional super-
critical vacancy loop. Only under heavy-ion irradiation, where
the cascades are smaller but have a higher vacancy density,
does the yield of vacancy dislocation loops becomes more
significant [3].

For the case of tungsten, the situation is different. In
experiments of Häussermann [9], where W (and Mo) was
irradiated using energetic gold ions, the 1

2 〈111〉 vacancy loops
were found to have an average diameter of between 27 and
46 Å, depending on the sample used in experiments. Thus
vacancy loops with diameters less than the critical size of
34 Å were observed, in contradiction with our simulation
results.

A likely reason for the discrepancy is the strongly non-
equilibrium nature of the defects generated by irradiation
in tungsten. The time taken for a particular cascade event
to reach equilibrium can be estimated by considering the
timescale of migration of the vacancies produced during the
cascade expansion phase. During collapse, which leads to the
formation of voids and other defects, these vacancies migrate
across the volume of the cascade, and therefore their motion is
the rate determining factor for reaching equilibrium. We can
estimate the characteristic equilibration time τ as:

τ ≈

L2
cascade

Dv
, (7)

where Lcascade is the size of a cascade, typically of the order
of 0.5 × 102 Å, and Dv is the diffusion coefficient for a single
vacancy at temperature T , given by the Arrhenius equation:

D ≈ d2ν0 exp

[
− Ea

kBT

]
. (8)

Here the attempt frequency ν0 can be approximated as the
Debye frequency ωD divided by 2π . ωD is calculated from
the Debye temperature TD via

ωD = kBTD

h̄
. (9)

For Fe TD = 420 K and for W it is 310 K [41], giving
the Debye frequencies of 8.75 × 1012 and 6.46 × 1012 s−1,
respectively. d is the jump distance, which for a bcc lattice
is

√
3

2 a. The activation energy Ea for vacancy migration used
in these calculations was 0.67 eV for Fe [42] and 1.78 eV for
W [43]. Assuming that T = 300 K (room temperature) we
find that for Fe this leads to the characteristic time of around
8 s whereas for W the result is the order of 4 × 1020 s, which is
equivalent to more than 1013 years!

The above estimate explains why in irradiation experi-
ments of tungsten the size range of the observed vacancy loops
includes diameters below the critical size predicted by our sim-
ulations. Whereas in Fe it is realistic to expect the experimental
observations to be of equilibrium configurations, it is virtually
impossible for this to be the case in experiments on tungsten
because the system is not able to reach equilibrium over nor-
mal timescales at room temperature. Thus the configurations
observed in experiments on tungsten at room temperature do
not represent the minimum energy configuration required for
direct comparison with the simulation results presented here.

The characteristic time for Fe obtained from our estimate
above is a little longer than the timescale for the formation and
evolution of vacancy dislocation loops observed in the recent
irradiation experiments by Yao et al [3], which was of the order
of 0.1 s. Kinetic Monte Carlo (kMC) simulations of cascade
evolution in Fe by Hudson et al [44] have also indicated that
the single vacancy concentration falls to zero on this 0.1 s
timescale at T = 500 K as a result of diffusion followed by
clustering or recombination with self-interstitial atoms.

4. Concluding remarks

In conclusion, in the present work we have investigated both
the 0 K stability of vacancy and interstitial defects structures
and the thermal migration properties of vacancy and interstitial
prismatic loops. Analysis of the formation energy of vacancy
clusters has confirmed that spherical voids are the most
energetically favourable configuration for a cluster of any given
number of vacancies. Hence the vacancy loop structures seen
experimentally represent metastable configurations, which,
given enough time and sufficient thermal activation, should
evolve into the void structure. Additionally, the stability
investigation also suggests that there is a critical size below
which these vacancy loops become even more energetically
unfavourable. In this region the open loop structure is
more stable, although it has a tendency to transform into a
spherical void at modest temperatures via the diffusion of
single vacancies across its surface. For Fe, this is in good
agreement with recent experimental observations by Yao et al
[3], where the smallest loops observed in iron were no smaller
than around 2 nm or 20 Å in diameter. For the case of
W, experiments [9] indicate the presence of vacancy loops
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below the stability threshold found in the simulations. This
observation can be rationalized by realizing that in W, due to
its extremely low vacancy diffusion coefficient, the cascade
evolution cannot proceed to equilibrium conditions on the
typical experimental timescale.
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